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Abstract: The maritime transportation between Albania, Italy, and 
Montenegro is expanding, bringing economic benefits but also increasing the 
risk of disasters, particularly concerning the transportation of hazardous 
cargo. The Interreg IPA CBC Italy-Albania-Montenegro 2014-2020 CRISIS 
Project N.465 addresses these risks within the South Adriatic region and its 
ports, introducing an innovative Decision Support System (DSS) aimed at 
enhancing cross-border management of hazardous materials. This system 
focuses on preventing fatal accidents and promoting environmental 
sustainability by minimizing pollutant dispersion. It incorporates several 
factors, including weather forecasts (wind and wave conditions), port 
infrastructure, ship design, marine protected areas, and traffic flow to 
optimize Berth Allocation towards safer solutions. The solution developed 
within the project prioritizes safety by not only defining advanced algorithms 
but also ensuring that optimal solutions are applied throughout operations. 
The experience matured during the project execution led us to the 
formulation of a novel approach for solving Berth Allocation Problem, 
starting from evidence found in literature and evolving one of the most 
popular approaches towards the inclusion of sustainability-related 
parameters.  

Keywords: Berth Allocation Algorithm (BAP), Hazardous Cargo 
Transportation, Risk Management, Cross-Border Cooperation & Innovative 
approach, Environmental Sustainability. 
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1.  Introduction 

1.1. The CRISIS Project 
The Cross-border RISk management of hazardous material 

transportation (CRISIS) project is a European co-funded project involving 
partners from Italy, Albania and Montenegro. CRISIS aims to investigate 
these specific risks by analyzing data and evidence from the Italian, 
Albanian, and Montenegrin territories, along with road transportation in the 
surrounding regions. Its main objective was the development of an 
Information and Communication Technology (ICT) Platform to monitor 
hazardous materials transportation in the Adriatic Sea. This platform 
integrates two DSS Modules to enhance cross-border management of 
hazardous materials. The first module is focused on providing an enhanced 
berth allocation service, creating prioritized schedules based on ship 
features, transported cargo and weather condition; the second module 
focuses on open-sea transportation and aims to minimize navigation by 
including aspects related to Marine Protected Areas (MPA). The ICT 
platform, therefore, acts as a coordinator and monitoring tool for monitoring 
the transportation of such materials and support stakeholders in scheduling 
berth allocation plans. Based on the challenges identified during the project 
execution, the present article focuses on the development and 
implementation of an innovative algorithm for the second module with the 
aim of optimizing port operation under environmental and safety 
constraints. 

1.2.  Background and Motivations 
Transportation by sea has been a cornerstone of global trade for 

centuries, facilitating the movement of raw materials, finished products, and 
commodities across vast distances [1]. As international trade has expanded 
and evolved, so too have the complexities and challenges associated with 
maritime transportation and cargo handling. One of the most pressing 
concerns is the safe and efficient management of ships carrying hazardous 
or dangerous cargo on board. Hazardous substances include gases (IMO 
Class 2), flammable liquids (IMO Class 3), toxic substances (IMO Class 6), and 
radioactive materials (IMO Class 7). These materials are vital to various 
industries, from manufacturing and energy production to agriculture and 
healthcare. While their transportation is crucial to sustaining modern 
economies, this also introduces unique risks that demand meticulous 
planning and execution. 

The primary objectives when transporting dangerous materials via 
maritime routes are to ensure the safety of human life, protect vessels and 
cargo, and prevent environmental harm. The potential consequences of 
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accidents involving hazardous materials are severe, encompassing 
immediate threats to crew members, long-term health risks, and 
environmental degradation. With its delicate balance of flora and fauna, the 
marine ecosystem is particularly vulnerable to contamination from spills or 
leaks from ships. 

Alongside transportation in open seas, an important topic is the 
management of ports and traffic near shores. This task, with its challenges 
and complexity, grows in importance when transportation of hazardous 
materials is involved. Effective berth allocation is crucial in any port 
management system, but when hazardous materials are in transit, the stakes 
are significantly higher [2].  

Typical operational and service level indicators, such as berth allocation 
waiting time, are particularly important for port performance intensity of 
port asset utilization [3]. Usually, waiting times between arrival and the 
allocation of berths have been decreasing. The world’s largest ports, like 
Antwerp and Hamburg, recorded a reduction in the port-to berth time. 
However, less positive performances were recorded elsewhere, while in 
some ports port-to-berth waiting times have increased like in India and 
some African countries [1]. 

Traditional algorithms for berth allocation focus on various operational 
objectives such as minimizing wait times, optimizing resource usage, and 
maximizing throughput. However, these objectives, although critical, are not 
sufficient to guarantee environmental and human safety, especially when 
hazardous materials are involved. Factors such as safety regulations, 
environmental risks, proximity to protected areas, and the potential for 
catastrophic events demand a more specialized approach to these problems.  

The proposed algorithm evolution is designed to integrate multiple 
layers of complexity into a cohesive system that aligns with both operational 
goals and safety protocols. By leveraging a combination of technology and 
methodologies, the proposed algorithms aim to provide both time-
optimized and safety-optimized planning solutions. 

The article is structured as follows: Section 2 presents a review of the 
existing literature on berth allocation algorithms. Section 3 details the 
theoretical foundation and implementation of the proposed algorithmic 
modifications. Section 4 reports and discusses the results obtained from 
laboratory benchmarks, evaluating the effectiveness of the proposed 
approach. 
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2. Berth Allocation Algorithm 

2.1.  Literature Review 
The Berth Allocation Problem (BAP) is a critical challenge in the domain 

of maritime logistics, particularly in the context of container port operations. 
The primary objective of BAP is to efficiently assign berths to incoming 
vessels based on various constraints and optimization criteria. This problem 
involves several considerations such as vessel characteristics, arrival times, 
berth availability, and compatibility with neighboring vessels. The 
complexity of BAP arises from the need to balance conflicting objectives, 
such as maximizing berth utilization while minimizing vessel waiting times 
and operational costs. In most cases, real-world factors like uncertainties in 
arrival schedules and dynamic berth availability further contribute to the 
intricacy of the problem. As a result, finding an optimal solution to the Berth 
Allocation Problem often requires advanced optimization algorithms and 
heuristics due to its NP-hard nature, making it a challenging and crucial area 
of research in maritime logistics. 

The study of BAPs features a rich literature of methodologies and 
algorithms aimed at optimizing the allocation of berths in port terminals. 
Within this literature, researchers have explored various approaches 
tailored to different BAP classifications, such as static versus dynamic 
scenarios or continuous versus discrete layouts. Literature evidence shows 
that BAP is often solved with methodologies such as exact algorithms, 
heuristics, and metaheuristics, each offering unique benefits and trade-offs. 
The choice of methodology often depends on factors such as problem size, 
required accuracy, and available computational resources, with hybrid 
approaches often offering the most effective solutions by combining 
elements of different methodologies. 

Among the solutions that have significantly contributed to BAP is the 
non-linear mixed integer programming model together with the stochastic 
beam search algorithm, proposed by [4] with the aim to minimize the costs 
of delay and asset reallocation on the terminal.  

Efficient terminal management requires reducing the time of ships 
spent in the port on the loading/unloading and other services, and therefore, 
the “Port Collaborative Decision Making (PortCDM)” concept is introduced 
in [5]. The main contribution of this concept is the intelligent system that 
will improve port call data sharing and enable high-precision calculations of 
ships Estimated Time of Arrival (ETA) and Expected Time of Departure 
(ETD), which is of great significance for berthing operations and reducing 
the ship time in port in waiting queues at anchorage, as well as other 
bottlenecks related to berthing/unberthing and servicing on the docks.  
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An interesting approach was proposed in [6], conceptualizing the “Bi-
objective Robust Berth Allocation Model (BRBAM)”, which aims to 
determine a ship berthing program that minimizes operating costs and 
maximizes customer satisfaction. The focus is on economic performance and 
customer satisfaction, with the goal of optimizing the robustness of the berth 
assignment policy. In the field of metaheuristic algorithms, notable efforts 
have been made in [7] with the use of the Chemical Reaction Optimization 
(CRO) inspired by the thermodynamics law of chemical reaction and in [8] 
with the development of a novel evolutionary algorithm with the aim of 
assisting berthing scheduling at container terminals. In [9], one of the most 
recent studies in this field, the authors proposed a solution methodology 
involving the Cuckoo Search Algorithm (CSA) to minimize terminal costs, 
demonstrating its higher effectiveness compared to other metaheuristic 
algorithms [9,10] . 

The above-mentioned studies focused on minimizing costs, times or 
maximizing satisfaction, hence putting particular emphasis on the economic 
aspects of the BAP. In literature, fewer studies highlighted the sustainability 
aspects of such dangerous operation, especially when dealing with 
hazardous cargo or unsafe operational conditions. In [11] the authors 
studied BAP including tidal constraints. One of the most advanced literature 
evidence found was [12] where the authors focused their efforts on 
designing a “Risk Assessment for berthing of hazardous cargo vessels”, 
however the paper focused primarily on finding the causes of accidents in 
handling cargo vessels more than solving a BAP problem. 

This article focuses on finding an optimal solution to improve with a 
more complex problem formulation that includes the above-mentioned risk 
factors in a solution which includes cargo risk levels, wharf structure and 
weather variables in the algorithmic solution. CSA was selected as the 
candidate algorithm based on the literature findings, due to its capability of 
finding optimal solutions in low computational times. Major effort was put 
into minimizing loading/unloading risks, hence increasing the complexity of 
the problem itself with respect to the classical formulation. 

3.  Risk-Aware Berth Allocation Algorithm 

3.1. Modified Problem Formulation  
This article is primarily focused on the hybrid berthing layout with 

dynamic vessel arrivals, hence it will be referred to as DH-BAP, which is 
more complex with respect to the scenario with static arrivals. The choice of 
hybrid berthing layout is taken due to the need to assign a safety score to 
pre-determined berthing point in the whole quay which is difficult if applied 
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with a high level of granularity. Hence, the hybrid layout comes from the 
division of the dock in a fixed number of berthing points, even if long ships 
are allowed to occupy more than one, if necessary. 

For formulation simplicity, the Maritime Container Terminal (MCT) is 
considered to possess one berthing layout with known length to 
accommodate vessels arriving at various time points dynamically. The set of 
all potential berthing positions on the wharf is denoted as 𝐵 =  {1, 2, … , 𝑀}. 
This simple case is extendable for each berth, even with wharfs with 
particular berthing configuration, with minimal effort. 

Typically, the BAP is tailored to a specific time frame for vessel arrivals, 
in this specific case a focus is placed on the upcoming 24 hours (next day). 
This period is hence divided into a set of 30-minute time intervals denoted 
as 𝑇 =  {1, 2, … , 𝐾}. Each interval is accompanied by a weather assessment, 
detailing both wind and sea conditions expected during that specific time 
segment. 

The set 𝑆 =  {1, 2, … , 𝑁} encompasses all ships scheduled to arrive at 
the terminal on the following day. Crucial information is available in advance 
for each ship, including ETA, PBP (Preferred Berthing Point), ship length, 
estimated (or required) ETD, and an estimate of cargo risk based on the 
pollution risk posed by the products transported and their potential impact 
on marine species. In addition, the estimated handling times for each ship 
were considered known in advance based on previous agreements between 
the MCT and the incoming ships, such as the number of quay cranes 
chartered by the ship or the number of containers to be loaded/unloaded 
during the handling period. 

In an ideal scenario (free wharf and mild weather conditions), as soon 
as a ship arrives it is allocated at the safest spot in the quay, fastly handled 
and depart, respecting the handling times. If more ships arrive in the same 
interval, priority must be given to ships with higher cargo risk, reserving 
them the safest spots in wharf. Other ships are then allocated in less safe 
spots (if available) or have to wait for a safe spot to be available, based on 
weather conditions, wharf availability and cargo risk assessment. In the end, 
in case of severe weather conditions, the algorithm should be able to trade 
off handling speed and safety by delaying unsafe operations. 

Total risk cost for a ship arriving at the MCT is split into three different 
terms, two of which have the most impact: 

Waiting Costs (WC) influenced by the total time a ship has to wait before 
being served (Waiting Time or WT), the average wave risk assessment for 
the WT and the ship’s cargo risk level. For waiting costs only wave risk is 
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considered due to waiting areas often exposed to higher marine currents. 
Equation for waiting costs, expressed as [risk/hour] is the following: 

 
𝑊𝐶 = 𝑊௪ ∗ [(𝐶𝑅𝑆௦ + 1)ଶ ∗ 𝑊ௐ஺ௌ] ∗ 𝑊𝑇௦                   (1) 

Where: 

 𝑊௪ is the waiting weight, expressed as cost per unit time, indicating 
how waiting is considered high on cost impacts on the overall cost. 

 𝐶𝑅𝑆௦ is the Cargo Risk Score of ship s. 

 𝑊ௐ஺ௌ is the average Waiting WAve Score for that wharf in the 
waiting times. 

 𝑊𝑇௦ = 𝐵𝑇௦ − 𝐸𝑇𝐴௦; 𝐵𝑇௦ is the berthing time for the ship. 
 

Handling Costs (HC) are influenced by the time necessary for a ship to be 
served once docked (Handling Time, HT), the average wind risk assessment 
for the whole period in which the ship is served, the ship’s cargo risk level 
and the berthing point safety assessment score. Since wharfs are usually 
protected from strong marine currents, only wind scores are considered for 
handling costs, being quay cranes operations riskier under severe wind 
conditions. Equation for handling costs is the following: 

 
𝐻𝐶 = 𝐻௪ ∗  ൣ(𝐶𝑅𝑆௦ + 1)ுೈ಺ೄ/஻ௌௌ൧ ∗ 𝐻𝑇௦                                 (2) 

Where: 

 𝐻௪ is the handling weight, expressed as cost per unit time, the index 
on how handling costs impact on total cost. 

 𝐻ௐூௌ is the average Handling WInd Score for that wharf during the 
whole handling period of the ship. 

 𝐵𝑆𝑆 is the Berth Safety Score, assigned to a berthing point based on 
its positioning on wharf and its exposure to sea and winds. 
 

- Late Departure Costs (LDC) are influenced only by the amount of time 
a ship exceeds its ETD. This difference is computable as: 𝐿𝐷𝑇 =  𝐸𝑇𝐷 −
(𝐸𝑇𝐴 + 𝑊𝑇 + 𝐻𝑇) and it can assume also negative values, resulting in an 
incentive towards fast ship handling. The equation is the following one: 
 

𝐿𝐷𝐶 = 𝐿𝐷௪ ∗ 𝐿𝐷𝑇௦                                                            (3) 
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Where 𝐿𝐷௪ is the late departure weight expressed as cost per unit time 
indicating how early or late departure impacts on the total cost. 

Hence, the overall cost equation for a single ship can be expressed as 
following, considering a ship 𝑠, berthed at time 𝐵𝑇௦ and in berthing position 
𝐵𝑃௦, waiting under average wave conditions 𝑊ௐ஺ௌ and being served under 
average wind conditions 𝐻ௐூௌ: 

 
𝐶𝑜𝑠𝑡(𝑠, 𝐵𝑃௦, 𝐵𝑇௦, 𝑊ௐ஺ௌ, 𝐻ௐூௌ) = 𝑊𝐶 + 𝐻𝐶 + 𝐿𝐷𝐶                    (4) 

 

The goal of the berth allocation problem is to find the optimal berthing 
position and times for all ships coming at the planning horizon such as the 
overall cost is minimized: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ෍

௦∈ௌ

 ෍

௕∈஻

 ෍

௧∈்

 𝑥௦௕௧ ∗ 𝐶𝑜𝑠𝑡(𝑠, 𝐵𝑃௦, 𝐵𝑇௦, 𝑊ௐ஺ௌ, 𝐻ௐூௌ) 

subject to[9]: 
[𝐶1] 𝑥௦௕௧ ∈ 0,1               ∀𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 

[𝐶2] ෍

௕∈஻

 ෍

௧∈்

𝑥_{𝑠𝑏𝑡}  =  1                   ∀𝑠 ∈ 𝑆 

[𝐶3] 𝐵𝑇௦ ≥ 𝐸𝑇𝐴௦                                  ∀𝑠 ∈ 𝑆 
[𝐶4] |𝐵𝑇௦ − 𝐵𝑇௦ᇲ| ≥ 𝑆𝐸𝑇                       ∀𝑠, 𝑠ᇱ ∈ 𝑆 

[𝐶5] 𝐵𝑃௦ + 𝐿௦ ≤ 𝑊                              ∀𝑠 ∈ 𝑆 

[𝐶6] ∑௦ᇲஷ௦ ∈ௌ  ∑
஻௉ೞା௅ೞ
௕ୀ஻௉ೞି௅௦ᇲାଵ  ∑

஻ ೞ்ାு ೞ்
௧ୀ஻ ೞ்ିு்ೞᇲାଵ 𝑥௦ᇲ௕௧  =  0         ∀𝑠 ∈ 𝑆   (5) 

 

[1] 𝑥௦௕௧ is a binary variable which takes value 1 if a ship 𝑠 is assigned to 
berthing position 𝑏 at berthing time 𝑡, 0 otherwise. 

[2] This constraint ensures that any ship is berthed only once during the 
planning horizon. 

[3] Third constraint ensures that ships cannot be served before their 
arrival. 

[4] Safety Entrance Time (SET) constraint ensures that two ships 
cannot be berthed simultaneously. Safety Entrance Time is included 
in the problem formulation and implementation since most ports 
welcome one ship at a time due to physical constraints at their 
entrance. 

[5] Length constraint is applied on the whole wharf, ensuring that all 
ships are allocated inside the physical dimension of the quay. 
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[6] The last constraint ensures that, during planning, two ships cannot 
even partially overlap in both space and time: two ships cannot 
coexist in the same berthing point if they share the same handling 
time slots. 

3.2. Chosen algorithm: CSA. 
CSA is a powerful nature-inspired optimization technique that derives 

its inspiration from the unique reproductive behavior of cuckoo birds. The 
inspiration for CSA comes from the brood parasitism strategy employed by 
certain species of cuckoo birds. These birds lay their eggs in the nests of 
other bird species, shifting the responsibility for incubating and caring for 
their offspring onto unwitting host birds. To survive, the cuckoo chicks must 
outcompete the host birds' own chicks for food and care. This concept of 
laying eggs in other birds' nests, combined with the need for cuckoo chicks 
to thrive in a competitive environment, served as the foundation for the CSA. 
In optimization terms, the "eggs" represent potential solutions to a problem, 
while the "nests" are the solution spaces. The objective is to find the best-fit 
solution by continually improving and replacing eggs in suitable nests.  

Introduced in 2009 by Xin-She Yang and Suash Deb, CSA has gained 
widespread recognition and adoption in the field of optimization. Its appeal 
lies in its ability to effectively address complex optimization problems 
[9,13], particularly those characterized by multi-modal and non-linear 
search spaces. CSA operates as a population-based optimization algorithm. 
It starts by initializing a population of "nests" or potential solutions to the 
optimization problem. Each nest represents a potential solution, and the 
quality of these solutions is evaluated based on an objective function. The 
algorithm then proceeds through a series of iterations, where cuckoos 
(representing new potential solutions) are introduced into the population. 
These cuckoos lay eggs (representing potential solutions) in nests, with the 
quality of the eggs determined by their fitness. If an egg is of higher quality 
than the nest it is placed in, it replaces the previous content of that nest. CSA 
also incorporates mechanisms to maintain diversity in the population. It 
identifies the "worst" nests and either replaces them with new random nests 
or abandons them altogether. Simultaneously, the "best" nests are retained 
to ensure that the algorithm does not lose promising solutions. The process 
continues for a predefined number of iterations or until a termination 
condition is met. Throughout these iterations, CSA explores the solution 
space, gradually improving the quality of solutions, and eventually 
converging to an optimal or near-optimal solution. 

The time complexity of the CSA is a topic of interest, as it influences its 
practical applicability. CSA's time complexity depends on a range of factors, 
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including problem size, the choice of parameters, and the complexity of the 
objective function. In general, CSA exhibits a moderate time complexity, 
often comparable to other metaheuristic optimization algorithms such as 
genetic algorithms and particle swarm optimization [9]. The primary 
computational burden arises from the evaluation of the objective function 
for each nest (potential solution) and cuckoo (new potential solution). The 
algorithm's performance can vary significantly based on the problem's 
characteristics. In cases where the objective function is computationally 
expensive, CSA may require longer to converge. Additionally, the number of 
iterations and the size of the population influence the overall runtime. 
Efforts have been made to enhance CSA's efficiency, such as parallel 
implementations and hybridization with other optimization techniques. 
These adaptations aim to reduce the time complexity and accelerate 
convergence, especially for large-scale and computationally intensive 
problems. 

CSA offers several notable advantages that make it a valuable tool in the 
realm of optimization: 

 Global Search Capability: CSA's ability to explore extensive search 
spaces and locate global optima is one of its primary strengths. It 
excels in scenarios where the optimization landscape is complex and 
multi-modal, ensuring that it does not get trapped in local optima. 

 Simple Implementation: The algorithm's simplicity is a significant 
advantage. CSA's minimal parameter requirements and 
straightforward structure make it accessible to both researchers and 
practitioners. It can be readily implemented and customized to 
address a wide range of optimization problems. 

 Diversity Maintenance: CSA incorporates mechanisms for 
maintaining diversity within the population. By identifying and 
replacing the worst nests while preserving the best ones, the 
algorithm strikes a balance between exploration and exploitation. 
This feature reduces the risk of premature convergence and 
promotes the discovery of high-quality solutions. 

 Parallelization Potential: CSA's population-based approach lends 
itself well to parallelization. This means that it can harness the 
computational power of modern hardware, making it suitable for 
addressing computationally intensive optimization problems 
efficiently. 

While CSA offers several advantages, it is essential to consider its 
limitations: 
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 Parameter Sensitivity: CSA's performance is extremely sensitive to 
the choice of parameters, including the population size, the 
termination criteria and parameters related to random generation of 
new solutions or deletion of less important ones. Tuning these 
parameters to achieve optimal results can be a non-trivial task and 
may require extensive experimentation. 

 Limited Scalability: CSA may encounter challenges when applied to 
very large-scale optimization problems. The population-based 
nature of the algorithm implies that it requires maintaining and 
updating a considerable number of nests, which can be 
computationally demanding and resource-intensive for massive 
problem instances. 

 Convergence Rate: CSA, while effective at global exploration, may 
exhibit a slower convergence rate compared to some other 
optimization algorithms for certain problem instances. Achieving 
convergence to an optimal solution might require more iterations, 
making it less suitable for time-sensitive applications. 

 

 
Fig. 1 – Example of pseudocode for CSA [14]. 

CSA proved to be a more effective algorithm compared to Mixed Integer 
Linear Programming (MILP) or Genetic Algorithms (GAs) in [8], giving both 
faster responses and converging to better optimal solutions than other 
metaheuristic algorithms. CSA implements a series of mechanisms to 
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improve exploration, such as the use of random walks or replacements of a 
portion of worst nests with the aim to generate new solutions. While random 
walks (Lévy Flights) help improve the solutions in the neighborhood of 
previous ones, nest replacement abandons worst solutions to explore new 
ones in the solution space. 

CSA proved its effectiveness in searching acceptable local optima, often 
near the global ones, even with multi-objective functions, and a highly 
constrained search space like the one imposed by the berth allocation 
problem [9]. 

3.3. Modified CSA: design and implementation details 
CSA was implemented using python 3.10.4 and deployed as an 

independent and scalable module. It acts as a service on calls, accepting an 
input and returning the planning. The code was organized in classes, 
modeling both the inputs and the solution. While implementing it, several 
aspects were taken into account, such as: 

 Egg and Nest definitions: it was important to define, pragmatically 
speaking, the characteristic of an egg, i.e., the shape of the solution. 
In the algorithm an egg was strictly related to a single ship, meaning 
that a nest is composed of N eggs, where N is the number of vessels 
taken into account in an execution. For each ship, both berthing time 
𝐵𝑇௦ and berthing position 𝐵𝑃௦ were taken in account, as depicted by 
the cost function defined in Section 3.1. Hence, an egg is represented 
by a berthing point depending on the wharf and a time slot from 
those defined in the problem formulation. This adaptation to the 
specific discrete use case led to an egg structure similar to a hash 
map, basing the search space on the integer indexes of both the 
berthing points and the time slots. 

 Constraints definition: two major types of constraints were 
identified while developing the solution, namely egg-domain 
constraints and nest-domain constraints. The former are related to 
the placing of a single ship in the wharf, so constraints C1, C2, C3 and 
C5; constraints C4 and C6, instead, involve more than one ship in a 
solution. Defining constraint types was useful to control operations 
while executing the planning algorithm, avoiding unfeasible 
solutions. 

 Starting conditions: starting conditions are necessary for every 
evolutionary algorithm and adopting strategies allows them to 
converge as soon as possible. In the design of the CSA, it was 
impossible to set a fixed starting condition due to the variable nature 
of weather, ship arrivals and port structures. However, to avoid 
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unfeasibility, the starting population was forced to respect both nest 
and egg constraints. 

 Evolutionary strategy: as depicted in [9], using levy flights led to a 
fast-convergence algorithm. The same strategy was adopted here, 
further details will be provided later in this chapter. 

 Replacement strategy: two replacement strategies for CSA were 
designed for algorithm execution. The first one consisted of simply 
replacing the worst nests with new randomly generated ones. The 
second replacement strategy implements a crossing over 
mechanisms where the resulting new nests are bred from two 
random nests in the whole solution space. 

 Hyperparameters tuning: once the problem definition was set, one 
of the most important parts for CSA execution is defining its working 
mechanisms by setting algorithm hyperparameters. CSA 
convergence speed is highly influenced by its settings and finding an 
optimal configuration is often a trial-and-error workflow. The 
following list is a comprehensive set of hyperparameters already 
tuned to provide a high convergence speed: 
o N_nest = 100: size of the solution space, namely the total 

number of nests generated as population sample. The higher 
the number of nests, the higher are the chances to find an 
optimal solution but also the execution times. 

o N_iterations = 100: max number of iterations of the 
algorithm. The higher the iterations, the higher the execution 
times but generally the lower the global fitness score reached. 
To avoid reaching the maximum number of iterations with no 
improvement, an early stopping mechanism was designed to 
stop the algorithm if it does not improve overall fitness after 
10 iterations. 

o pa = 0.65: fraction of worst nests to be deleted. Usually, in this 
algorithm, this number fixes at 0.25. The higher the fraction, 
the higher the chances of finding an optimal solution and the 
execution times. A too high value, however, can lead to 
convergence problems depending on the strategy used to 
replace abandoned nests. The value was set so high due to the 
trade-off between execution times and constraint compliance. 

o max_tries = 2: maximum number tries for iteration to avoid 
generation operations to stuck in endless loops. This could 
happen if the nest is not able to produce a new solution due to 
constraints and the number of ships. 
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o levy_beta = 1.5, sigma_u = 0.6966, sigma_v = 1, c_multiplier 
= 1: set of hyperparameters for the levy flight operations from 
literature. Noteworthy the c_multiplier parameter which 
decides how much the levy flight step influences the new 
solution, usually set to a fraction, but being set to 1 in this use-
case due to the particular solution structure. 

Here, the following pseudo-code to document the most important 
modifications apported to CSA for solving the DH-SBAP. Operation on eggs 
were mainly performed on two-element arrays, containing the indexes of 
berthing points and time slot of the current solution. When the egg indices 
are modified by the algorithm, the resulting object field for berthing point 
and time slot is also filled. Each egg has the responsibility to compute its 
fitness score, based on the BAP environment (weather variables included in 
the time slots list). Nests’ fitness and all constraints, instead, are handled by 
the berth allocation solver. 

 
Fig. 2 – CSA, CRISIS version. 
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Fig. 3 – CRISIS CSA’s modified levy flight step. 

 
Fig. 4 – CRISIS Mixing Replacement Strategy. Egg operations are treated as vector 

elementwise operations. 
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Fig. 5 – CSA Replacement Strategy. 

 
Among the two above-mentioned replacement strategies, the first one 

was kept, since it resulted in a better convergence rate and slightly lower 
execution times. Each time a new egg is generated or evolved from other 
ones, its fitness is evaluated against that of the whole nest: if the nest with 
the new egg has an overall fitness score lower than the previous one, the new 
egg is kept. The use of more nests ensures the algorithm to check for 
different optima in the solution space, trying different combinations.  
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Fig. 6 – Egg fitness score computing pseudocode, based on the fitness function 

formula above. 

4. Results and Discussion 

The implemented BAP algorithm described in Section 3.1 was evaluated 
against synthetic data. These synthetic data represent a set of realistic values 
from weather variables, cargo risk score and berth safety scores, each 
included in an integer variable in interval [1,10]. The idea behind these tests 
was to assess the behavior of our approach against simulated environments, 
evaluating if CSA can perform berth allocation following the cost function. 
During these experiments, both wind and wave indicators were simulated 
through a constrained random walk, while CRS scores and BSS scores were 
randomly sampled within the given set of values. Other variables were 
randomly sampled from a random distribution, like the ship ETA and ETD, 
handling time for each ship and ship length.  
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Fig. 7 – Example BAP testing environment. Reading from above to below: A) Ship 
placing plot. B) Wind intensity simulation plot C) Wave intensity simulation plot. 

 
In Fig. 7 there is a plot depicting the content of the typically used BAP 

testing environment, comprehending information about ship placement and 
weather simulation.  

The upper graph represents the positioning of the ship in a spatial and 
temporal graph: the x-axis represents time (in minutes) while the y-axis 
represents the length of the wharf. The horizontal gray lines starting from 
the vertical axis represent the berthing points that are the starting point for 
the ship's position. Berthing points are also reported in plot legend for 
clarity. Ships are represented as colored boxes, which show the ship's name 
and cargo risk score. The length of the box (x-axis) represents the ship's 
handling time, while its height (y-axis) represents the length of the ship. The 
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colored vertical lines, on the other hand, represent the ETA of each ship, and 
the color of the lines corresponds to the color of the ship. A ship can only be 
placed on berthing points, but can occupy more than one if necessary, 
provided it does not exceed the length of the dock. Moreover, x-axis is 
divided into timeslots of pre-defined length.  

The middle and lower plots, instead, represent the random walk 
simulation of wind and wave variables, respectively. The x-axis is aligned 
with the upper plot while the y-axis represents the intensity of the specific 
weather phenomena. 

4.1. Laboratory Benchmark and Sustainability Evaluation 
Given the experiment setup, it is necessary to assess if berthing 

schedules produced by the algorithm effectively contribute to improving the 
sustainability and safety of operations. The following statements represent 
the desired behavioral outcomes: 

1. In the case of severe sea conditions, ships should be served 
promptly, giving priority to high-risk cargoes, regardless of the 
berthing point. This is based on the simplified assumption that 
docks are protected from sea currents and waves, so 
loading/unloading operations can be conducted even under the 
presence of poor outer sea conditions. 

2. In heavy winds, high-risk cargo ships have two options: 
a. If berthing points with high safety scores are available, 

handling operations are allowed and ships can be served as 
soon as possible, reserving the highest safety points for the 
highest risk cargoes. 

b. If safe mooring points are not available and the wind is 
expected to decrease in intensity, it is preferable to wait. 

3. In the event of both adverse sea and wind conditions, a trade-off 
must be made. High-risk cargo should be handled promptly if safe 
docking points are available, otherwise it is preferable to wait until 
conditions are better. 

4. In case of mild weather data, the problem turns into a simple 
schedule optimization problem. 

These conditions are encapsulated in the mathematical formulation 
proposed in the previous sections. However, by exploiting only the cost 
function, it is difficult to estimate the effectiveness of the results themselves. 
Therefore, an evaluation approach based on a sustainability index is 
formulated. 
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Sustainability considers different metrics and KPIs based on the case 
study: in context of logistics and transportation, a recent study [15] 
identified a set of useful sustainability-related KPIs, assessing both 
economic, environmental and social dimensions. This article's focus on 
sustainability is based on preservation of marine ecosystem. For these 
reasons, the modified CSA is built on a hazard-mitigation cost function, 
considering several risk factors and penalizing unsafe cargo operations. 
However, quantifying the risk of pollution based on the BAP-produced 
schedule is a challenging task to perform without a rich set of field data. 

 Therefore, a custom comparative evaluation approach was proposed to 
validate results obtained from these algorithms. The comparison involves 
comparing two versions for each algorithm with their respective results: 

 Sustainable version: considers risk factors such as weather 
assessment, cargo risk assessment, wharf security assessment and 
marine protected areas, producing a sustainable-optimal result. In 
this context, sustainability is measured by the respective cost 
functions of each modified version of the algorithm. 

 Base version: is the base version of each algorithm, explicitly 
formulated to exclude weather data, wharf security assessment and 
cargo risk assessment, optimizing only service times. The base 
version produces a time-optimal result or unsustainable result. 

The following values are computing by crossing algorithms and results 
obtained: 

 Sustainable Result over Sustainable Cost (SRSC): The total cost 
obtained with a normal execution of the sustainable version of the 
algorithm. 

 Unsustainable Result over Unsustainable Cost (URUC): The total 
cost obtained with a normal execution of the base version of the 
algorithm. 

 Unsustainable Result over Sustainable Cost (URSC): Total cost 
obtained by applying the sustainable cost function over the results 
obtained by the execution of the unsustainable algorithm. It 
expresses how much the time-optimal solution costs in terms of 
sustainability. 

 Sustainable Result over Unsustainable Cost (SRUC): Total cost 
obtained by applying the cost-optimal function over the results 
obtained by the execution of the sustainable algorithm. It expresses 
how much the sustainable-optimal solution costs in terms of 
efficiency. 
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In the end, from these three values, three indices are provided: 

 Sustainability Index (SI): 
௎ோௌ஼

ௌோௌ஼
, where URSC >= SRSC, has a 

minimum value of 1 and no upper values. It indicates the 
improvement ratio in terms of sustainability brought by the 
sustainable solution against the cost-optimal one. 

 Effectiveness Index (EI): 
௎ோ௎஼

ௌோ௎஼
∗ 100 where URUC <= SRUC, has a 

maximum value of 100% and asymptotes towards 0%. It defines the 
percentage of effectiveness of the sustainable solution against the 
cost-optimal one. 

 Sustainability to Effectiveness Ratio: 𝑆𝐼 ∗ 𝐸𝐼, asymptotically 
touches 0 and grows to infinity. It defines how much improvements 
in terms of sustainability there are against the loss in terms of 
efficiency.  

4.2. Test Results 
BAP experiments were conducted in two stages to ensure thorough 

testing and evaluation of the system's performance. The first stage, 
conducted in a development environment, aimed to develop a correct 
algorithm, and visualize how the algorithm reacts to objective function 
minimization. In this environment, weather variables, wharf structure, and 
ships were simulated and/or forced to specific values.  

The first experiment was conducted with two ships, with the aim of 
testing scenarios involving simple concurrency. These ships had similar ETA 
but different cargo risk levels, so they must “compete” for the safest spot. 
The objective of the experiment was to test the algorithm's capability to 
allocate ships to the safest spot based on the cargo risk level they exhibit.  

 

 
Fig. 8 – Experiment 1 – Initial random placement. 

In this experiment, the wave and wind conditions were set to cross 
sharply. In the first half of the time horizon, the wind score was set high (9-
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10) and then decreased to an average of 6 after noon. On the other hand, the 
waves were set to increase in intensity, starting from a low level and 
reaching severe conditions at noon (Fig. 9). This experimental setup should 
test the harsh weather trade-off, expecting ships to be served on safest 
berths and promptly. Time slots are set to be 30 minutes wide. 

 

 
Fig. 9 – Experiment 1 - Berthing schedule and weather variables. 

 
The test produced correct and valid results: since Ship_1 had the highest 

risk (10), it was allocated to one of the two berthing points with the highest 
safety score (Point_2, 8). Moreover, it waited a time slot (30 minutes) before 
starting handling operations due to harsh wind conditions and since sea 
conditions were more permissive in the first half of the day. Ship_2 with a 
medium cargo risk (4) was immediately allocated to the second safest spot 
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available (Point_4, 8) instead of waiting for the first ship to finish. This was 
due to the increasing wave risk level, which impacts waiting times and to the 
lower cargo risk.  

The second experiment focused on testing the algorithm in a busy 
environment and verifying its convergence to an optimal solution. In this 
experiment time slots are set to 60 minutes to decrease available slots and 8 
different ships with different cargo risk level were placed randomly. 
Moreover, wind conditions were set to be severe, while sea conditions 
worsened during the time horizon, reaching their maximum intensity at the 
end of the day. 

 

 
Fig. 10 – Experiment 2 – Initial random placement. 

Based on the results shown in Fig. 11, it is possible to observe how the 
algorithm, starting from a random placement, converged to a better solution. 
It is also possible to see how ships with lower risk levels usually have more 
flexible scheduling. This test also showed improvement windows, for 
example, when there is the possibility to anticipate the allocation of low-risk 
cargo. For instance: 

 Point_3 which is the least safe with a safety score of 2 is not 
considered by the algorithm. This is a desirable outcome, since even 
low-risk cargo are untreatable under severe conditions and need to 
be handled in safer conditions. 

 Ship_1 has the highest risk score (10) was immediately handled in 
Point_2 with the highest safety score (9). 

 Ship_7 with a risk score of 8 was served at Point_1 with a berth 
safety score of 7. The plot exhibits a delay between the ETA line and 
the berthing point: this delay is caused by the time slot width of 60 
minutes. The ship could be served at other berths by moving other 
ships, but other configurations are suboptimal. For example, moving 
this ship to Point_2 would force both Ship_6 and Ship_4 to move to 
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other berthing points. For example, both could swap points with 
Ship_7, but they would also have to delay their operations by one 
time slot. 

 Ship_4 with a risk score of 6 was slightly delayed before being 
served in Point_2. This allowed for operations under slightly better 
wind condition, well supported by berthing point safety score. 

 Low-risk ships like Ship_8 or Ship_6 had a more flexible scheduling. 

 Ship_5 had no concurrence, so it is immediately served at the safest 
berth. 

 

Fig. 11 – Experiment 2 - Berthing schedule and weather variables. 

Concerning sustainability and efficiency preservation scoring, modified 
BAP showed appreciable performances. In the first test, for instance, our CSA 
approach correctly increased sustainability by reducing exposure to adverse 
weather conditions, still maintaining a prominent percentage of efficiency: 
ships were handled as soon as possible. In the second case, instead, it is 
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possible to observe how some ships were delayed with respect to the time-
optimal solution (it is sufficient to consider the third berthing point to 
imagine a better schedule). On the other hand, however, the choice of 
excluding the least safe part of the wharf increased safety in operations by 
several units, keeping the Sustainability to Effectiveness Ratio positive. 

 The sustainability scoring system, however, raised two major problems, 
due to the nature of the formulation itself, that are to be considered while 
reading the sustainability index: 

- It is sensitive to initial conditions: when repeatedly tested on a 
small number of ships and berths under varying weather conditions, 
especially when handling time slots do not overlap, the results show 
high variance. In some runs, the cost-optimal and sustainability-
optimal solutions may coincide, while in others, the sustainability 
index can be several orders of magnitude higher. This phenomenon 
is pronounced when the cost-optimal solution assigns high-risk 
cargo ships to one of the available low-safety berths under severe 
winds, since it prioritizes minimal service times.  

- The sustainable version of the algorithm is based on exponential 
functions, which means that sustainability scores can vary 
abruptly, especially in high-risk situations. For this reason, a 
qualitative scale was provided to scale down the sustainability score 
and avoid basing the assessment on extremely large values. 

5. Conclusion 

This article presented a preliminary study aimed at proposing 
alternative versions of commonly used algorithms to address Berth 
Allocation. This algorithmic solution was developed during the execution of 
the CRISIS project, alongside a second solution for identifying the Shortest 
Safe Path, together addressing both open sea transportation and berthing 
operations. Overall, the proposed approach opened new roads for the 
exploration of sustainable algorithm design, yielding promising results in 
laboratory testing. Following initial tests, the solution was successfully 
deployed in a second stage testing environment: a fully functional platform 
where real-time weather data is collected from external services and applied 
to realistic scenarios input by operators. The tests produced positive 
outcomes, enhancing safety during cargo loading and unloading by adjusting 
berthing points and/or times to reduce overall operational risks. 

 
Accordingly, the authors acknowledge the study’s limitations and 

identify directions for future research. 
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A primary limitation is the need to explore a broader range of 
algorithms. This article primarily focused on evolving the objective functions 
of CSA but did not investigate the possibility of applying the same cost 
functions to alternative algorithms.  

Another limitation is the validation methodology, which is currently 
applicable only in a laboratory environment. The methodology is, in fact, 
purely theoretical and closely tied to the defined objective function. A 
suggested approach could be to create specific simulations that include ship 
features, transported goods, and weather conditions, allowing for the 
measurement of accident probability and related severity. These results 
could then be compared with classical approaches, enabling the definition of 
well-structured KPIs to assess how effectively the proposed modifications 
improve sustainability. 

Finally, there is awareness of potential improvements to the proposed 
approach, which is currently based on value estimation. These 
improvements could be introduced by incorporating more accurate 
situational factors, including, but not limited to, a wider range of weather 
variables, operational efficiency factors, human risk factors, and the 
evaluation of possible violations of Collision Regulations, and defining a 
rigorous scoring method to correctly score cargo risk and berth safety. 
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